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STATISTICS OF POLYMER SOLUTIONS FROM

SCALING CONCEPTS FOR GEOMETRY AND

RELATIVISTIC SELF-DIFFUSION IN LIQUIDS
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(Received 20 March 2002)

Basic results on conformational statistics of polymer solutions are derived from recent scaling concepts for
geometry and a relativistic picture for Brownian self-diffusion in liquid media. Any chain conformation is
interpreted as a geometrical state affected by its end-to-end dimension, which here denotes the mean deviation
between geodesic paths diffusing in the relativistic liquid phase. Statistical polymer length distributions solve
an ondulatory equation in non-Euclidean manifolds for coil extension and shape. When length scale is
vanishing, the size scaling is found again in terms of parallelism angle rotations. The characteristic chain
ratio identifies instead an average metric coefficient, originating topologically from rotational degrees of
freedom internal to single molecules.

Keywords: Polymer solutions; Conformational statistics; Geometrical scaling laws

INTRODUCTION

Macromolecules in liquid solution undoubtedly represent a challenging and relevant
scientific discipline. Its remarkable importance in technology and industry aside, the
variety of experimental and theoretical frames related draws an astonishing framework,
rich of ingenious solutions, shortcomings, open questions and links to other fields, only
apparently far away. For instance, while the suitability of universality and reptation
paradigms [1] is not completely clarified yet (see, for instance [2]), chain molecules
provide quantum gravity loops with effective representations [3] and exhibit quite
general connections with topology, gauge fields and knot theory [4].
From a statistical viewpoint, folding patterns of polymer solutions have been

described according to several approximation levels, dealing both with energetic
and geometrical parameters (see the deep and general account given in [5]). In this
direction towards conformational analysis, the schematic representation in Fig. 1
immediately shows some dominant step variable, determining shape and size of a
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polysaccharide molecule immersed in a liquid solution [6]. Conformational and
dynamical properties of chains formed by n residues were then modelled upon
specifying the geometry depicted by the (n� 1) sets of rotational angle pairs [7].
Molecules taking up regular helical conformations (like in crystallographic states) are
easily identified by a single constant pair of values in the rotational angle map [8].
Along this cross-fertilizing research line, the present article continues some former

work [9–12], generally proposed to relate statistics to geometry. Theoretical results,
preliminary developed and discussed through the next Sections 1 and 2, aim at
introducing the consequence of a recent relativistic picture of self-diffusion in simple
liquids [9,13] and its geometrical analogy [10,12]. Here, they are helpful for linking
geometry and energetics of single molecules to asymptotic chain features. Such
predictions are normally carried out by means of Monte Carlo, or equivalent
techniques [14]. They rely upon local contour energy diagrams, depending on
significant degrees of freedom of the building block (normally, dihedral angles) and
reproducing the monomer–monomer interactions mediated by the liquid [15]. In our

FIGURE 1 Summary of the conformational analysis of a long molecule immersed in a liquid.
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framework, suitable analysis of the starting energy landscape is expected to replace
current numerical procedures.

1. BASIC CONCEPTS

1.1. Relativistic Self-diffusion in Liquids

A relativistic picture of self-diffusion in liquids allowed us to get the main scaling laws
arising in polymer solutions (see [9] and references therein). If the bulk phase is
structured relativistically with respect to diffusion, any macromolecule identifies the
metric transformation induced by the local mobility (or diffusivity) change correspond-
ing. Formally, the law of Brownian movement [16] was employed to introduce a
4-dimensional spacetime interval (�2) relying on mean square displacements ðx2kÞ,
time (t) and a limit diffusion coefficient value (D):

d�2 ¼ Ddt� dx2 � dy2 � dz2 ð1Þ

If a chain molecule forms by replacing N (�D/DN) units, the invariance constraint joint
to Eq. (1):

d�2 ¼ d�02 ð2Þ

allows one to account the overall spacetime scaling for. On this basis, laws of length
contraction and time dilation originating from Lorentz transformations of special
relativity [17] turn out corresponding to the scaling behaviour of end-to-end dimension
and Rouse time belonging to ideal polymer coils [18]:

r2 � N
t � N 2

�
ð3Þ

where r2 ¼
P

x2k. Analogously to the original framework the ideal random coil,
provided without mass, must lie in a flat manifold. Accounting for the mass distribution
requires to introduce the space curvature. Particularly, curved and empty spaces have
their analogy to single coils with excluded volume effects, while Einstein equations of
general relativity [17] rather suit concentrated polymer systems. A new scaling law

for average size ð
ffiffiffiffi
r2

p
Þ, diffusion (DN) and viscosity (�N) coefficients of N-long chains:

DN

ffiffiffiffiffiffiffiffiffiffi
�Nr2

q
� const ð4Þ

was extrapolated as a weakly covariant transformation. It is quite satisfactorily fulfilled
by universal exponents of both ideal and real polymer solutions, either in low and high
molecular weight regimes (see discussion in [9]).
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1.2. Scaling Concepts for Geometry

The previous picture suggest (a) looking at the scaling behaviour of macromolecules in
solution as the consequence of partially ordering (or else, localizing, shaping, and so on)
a space intrinsically disordered (i.e., a liquid) and (b) seeking some generalization in
terms of basic geometry. We started from the simplest geometrical analogy, consisting
of measuring a length (�) in some extended space portion ð%Þ, which is though as it was
originally indistinguishable. This operation only requires introducing a scalar shape
function ð�Þ, for instance:

%� ¼ � ð5Þ

and, similarly to the Brownian motion law �2/Dt, tackling the last Eq. (5) relativisti-
cally. Formal details may exhaustively be found elsewhere [10,12]. Lorentz transforma-
tions for % and � returned a first example of scaling laws for geometry:

�‘ðrÞ / ��ð%Þ ð6Þ

which can link shapes at two distinct scales (‘ and �). Further behaviours can be
obviously determined on the basis of the initial geometrical constraint (Eq. (5)).
In any case, when � is thought as a spatial probability, statistical distributions in
Brownian media turn out to scale accordingly. Equation (5) may also be considered
like a uncertainty statement for geometry: measuring affects somehow extension and
shape underlying. We will get back to this point just in the instance of polymer
solutions (next section).

1.3. Length–Temperature Equivalence

The former geometrical picture point then out a length-temperature equivalence [11].
Briefly, any thermal statistics would correspond to a geometrical transformation at
smaller length scales:

" ¼ ‘ð�Þ ð7Þ

where "¼E/kBT and � ¼ %=L stand respectively for energy and length in Boltzmann
and Bolyai–Lobachevskij (BL) unit. The last quantity is univocely specified by the
BL formula:

e�� ¼ tan



2
ð8Þ

connecting parallelism angle (
) to distance ð%Þ in non-Euclidean spaces through the BL
length (L) [19]. The Euclidean case is obviously approached in the limit of
L ! 1 ð
 ¼ �=2Þ. By doing so, the most general problem becomes rewriting statistical
thermodynamics results in terms of geometry (at smaller scales). We may consider, for
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instance, the geometrical partition function specified by Eq. (7):

Z ¼
X
k

e�‘k ð9Þ

When ‘ is a linear map, it returns the following average size equation (in L unit):

�L ¼
@ lnZ

@ lnL

� �
ð10Þ

which was applied to model swelling of polymer chains in liquid solutions and
micellar growth in dilute microemulsions [11]. The so-called packing parameter
was modelled as a length contraction–dilation of the liquid space that hosts single
surfactant molecules.
Before proceeding, it is worth to summarize the two-folded significance which

the end-to-end dimension would take in the framework aforesaid. From the relativistic
picture for self-diffusion in liquids, it denotes a geodesic path lying in a Lobachevskij
manifold, where length contraction and time dilation establish as intrinsic spacetime
features. The scaling concepts for geometry more generally suggest looking at polymer
coils as representative of geometrical states, undetermined by the observation scale itself
(i.e., just the average end-to-end distance). We get so motivated explaining statistics of
polymer solutions in terms of geometry alone.

2. CHAIN STATISTICS FROM GEOMETRY

2.1. Size Scaling from Parallelism Angle Rotations

Here, we set out to translate the polymer size scaling into angular rotations. The ideal
limit of vanishing scales is the first point to face before concentrating ourselves on the
level of single molecular residues.
Consider so the Lobachevskij geometry generated through parallelism angle

rotations linked to a polymer coil with Kuhn step size l. For the sake of simplicity,
we will restrict our analysis to the freely rotating chain model [20], characterized by
fixed bond angle supplements () and rotation angles that are free to vary. To describe
the spatial coil evolution, the BL formula can be adopted upon mapping, for instance,
L ! l and 
 !  (see Eq. (8) and Fig. 2(a)). The classical results base on the ordinary
random-walk diffusion laws. Let c1 be the so-called characteristic ratio, the asymptotic

end-to-end distance � ¼

ffiffiffiffi
r2

p
is (in unit of l ):

�2 � c1N ð11Þ

with c1 ¼ ð1þ cos Þ=ð1� cos Þ, or else:

�2 � L ð12Þ
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L � N being the contour length. To proceed, consider the angular dependence of
�l � %=l along the end-to-end direction, % ! % cos :

�lðÞ ¼ �ðcos Þ�1 ln tan


2
ð13Þ

Its integral evaluates the net angular excursion that results from moving along the
contour length, and reads (Appendix I ):

Z �

0

�lðÞ d ¼
�2

2
ð14Þ

Thereby, as:

� ln tan


2
¼

X
k

cosk 

2kþ 1
¼ cos  þOðcos3 Þ ð15Þ

ðbÞ

FIGURE 2 (a) Modelling the polymer chain conformation by the BL formula. (Eq. (8)); (b) Sketch of
�l¼�l() and net parallelism angle scaling (Eq. (13)).

ðaÞ
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the same quantity calculated along any radial path approaching the Euclidean manifold
ð ! �=2Þ must obviously equal �, or else the rectangle with width � and height
�lð ! �=2Þ ¼ 1 (Fig. 2(b)). Expressing the obtained results as:

L � �2

� � �

�
ð16Þ

reproduces the scaling law for a random-walk, where lengths are mapped into angles,
say L � N ! �2. Appendix II proves lastly the characteristic ratio in Eq. (11) follows
from the constant arc length ratio between two coaxial horocycles [19] that are distant
by two unit length:

c1 � e2=L ¼
1þ cos 

1� cos 
ð17Þ

Real asymptotic mean square displacements and ideal random-walk end-to-end
dimensions can be therefore related by merely geometrical means (see also Fig. 3).
Observe that the excluded volume effect (here, 
 6¼�/2) equals curving the space
again ðL 6¼ 1Þ.

2.2. Chain Conformation as Indetermined by the End-to-End Dimension

The second purpose is recovering the ordinary polymer statistics through the same
conceptual background underlying the previous paragraph. We should only consider
finite length scales, and recall the uncertainty relation associated with Eq. (5):

�� �% � � ð18Þ

The (classical) limit, � ! 0, brings us back to the instance just developed, angle
rotations taking the place of length displacements. As soon as a macro-molecule

FIGURE 3 Characteristic ratio from the arc length ratio of two coaxial horocycles.
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forms, i.e. � 6¼ 0, we need a stochastic-causal (or quantum-like) description [21], where
any chain conformation be representative of some indetermination state for
polymer extension and shape. The most straightforward way to proceed is certainly
modelling the statistical distribution of end-to-end separation distances by means of
an ondulatory approach. Now, the simplest Schrodinger equation [22] when the
Planck constant �hh ! � and the manifold is curved [17] is:

�
�2

2
ffiffiffi
g

p @�ð
ffiffiffi
g

p
g��@��kÞ þ vkð%

kÞ�kð%
kÞ ¼ �k�kð%

kÞ ð19Þ

where f%kg is the coordinate set, vk is the potential function in the %
k representation, g��

specify the (controvariant) elements of the metric tensor with determinant g¼ det g��
and @k � @=@%kÞ. Note that information on chain statistics is carried by �k and �k.
The former denotes a wavefunction concept for geometry, termed hereinafter as
Lobachevskij wave (LW), while the latter is the eigenvalue for the geodesic arc
length. As � depends on metric, however, a mean field description is only allowed by
Eq. (18) [23]. To this aim, some average Gaussian curvature (kL�L�2) and metric
coefficient ð �ggkkÞ can be conveniently employed. Introducing in fact the curvature
scalar,R=2 ð� �kLÞ [24]:

vk �
jkLj

2
%k

2

ð20Þ

yields:

��2gkk@2k�k þ jkLj%
k2�k ¼ 2�k�k ð21Þ

It is solved evidently by discrete harmonic eigenfunctions and spectra and, letting the
variable transformation xk ¼ gkk%k, they are:

�2k, n ¼ ane
�ðxk

2
=2s2ÞH2

k, n

xkffiffiffiffiffi
2s

p

� �

�n ¼
s2

L2
nþ

1

2

� �

8>>><
>>>:

ð22Þ

Here, s2� �L is the total distribution variance (the uncertainly on the coil extension),
Hk,n denotes the nth Hermite polynomial along xk and an ¼ 1=ð2

nn!
ffiffiffiffiffiffi
2�

p
sÞ. Results

are formally independent of shifting the average chain baricentre, %k ! %0k ¼ %k � %k.

3. DISCUSSION

Note the proposed Eq. (21) resembles that for the so-called geodesic deviation, say:

d 2�k

d�2
þ kL�

k ¼ 0 ð23Þ
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giving the relative acceleration which two geodesic paths, parametrically displaced by
�k ¼ �kð�Þ, undergo. It only suffices to map �k ! �k and modify the curvature
contribution accordingly. Interpreting statistical length distributions like ondulatory
geodesic deviations so leads into a couple of main remarks. Precisely, (i) generating a
polymer conformation (shape) affects the length distribution in the form of statistics.
Any conformational statistics, in other words, stands for the uncertainty to pay for
creating chain conformations; (ii) wavefunctions in the extension representation
denote stationary deviations between geodesic trajectories, which Brownianly diffuse
inside the relativistic liquid phase (Fig. 4).
As expected from any ondulatory approach, the obtained statistical description does

not reduce to a single eigenfunction only. Usual normal distribution functions [20],
generally adequate to model long flexible chains, correspond here to ground state
Lobachevskij waves (n¼ 0, Hk,0¼ 1):

�2k, 0ðx
kÞ ¼

1ffiffiffiffiffiffi
2�

p
s
e�ð%k

2
=2s2Þ ð24Þ

Note that LW associated with higher, excited levels (n� 1), possess more than one
relative maximum (i.e., see Fig. 5) and can therefore be used for describing non-
Gaussian cases. Particularly, the method above may be useful to attempt some
closed-from expression applicable to difficult instances, like statistics of short chains
of any flexibility [25]. To do so, taking anharmonic contributions into account would
surely make the approach more realistic. We also see the excluded volume effect is
carried here by oddwavefunctions, i.e., thosewhereHermite polynomials are vanishing in
zero. In any case, the single total eigenfunctions read the product of their orthonormal
projections:

�2nðx
kÞ ¼ An

Yd
k¼1

e�ðxk
2
=2s2ÞH2

k, n

xkffiffiffi
2

p
s

� �
ð25Þ

d being the manifold dimension and An ¼ adn .

FIGURE 4 Statistical density of chain length displacements as average diffusive geodesic deviations.
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Another point concerns the interpretation of the root mean squares met (�, L, s).
Taking advantage of the same unit in Section 2.1, � � L and L� l, implies at once:

s2 ¼ Nl2 ð26Þ

i.e., the scaling law for a random-walk again, along with its normal distribution:

�2r, 0ðrÞ ¼
1

l
ffiffiffiffiffiffiffiffiffiffi
2�N

p e�ðr2=2Nl2Þ ð27Þ

Following a second line, however, one may also think of the equilibrium state of a
three-folded geometrical process, for measure, extension and shape (Fig. 6). Working
out the equilibrium partition function with s ¼ L ! �, correctly constrains � and �
to possess the same scaling behaviour (Appendix III). As for the meaning of the con-
stant metric tensor, we may come back to the actual coordinate set ðxk ¼ �gkk%kÞ
and distribution variance ðs2kk ¼ gkkNl2Þ and write c1 ¼ gkk or, in covariant notation:

c1gkk ¼ 1 ð28Þ

Not surprisingly, the characteristic ratio is linked to an average metric coefficient,
changing its unitary Euclidean value (¼�/2 in Eq. (17)) whenever geometry gets
curved.

4. SUMMARY AND FUTURE RESEARCH LINE

The aforesaid can be summed up into an overall equation of the form:

Fðc1; large scalesÞ ¼ f ð�0; small scalesÞ ð29Þ

FIGURE 5 One-dimensional LW (Eq. (22)). The n value indicates the linear superposition of the first n
eigenfunctions normalized to unity (H0¼ 1, H1¼ 2r, H2¼ 4r

2
� 2, H3¼ 8r

3
� 12r).
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�0 being a set of molecular parameters. Expressing the function on the right may
take advantage of results in Section 2.1, where the characteristic ratio concept was
translated in terms of rotational degrees of freedom in single residues (generally,
dimmers). The large scale analysis joint instead the coil size to some average metric
coefficient. Therefore, Eq. (28) simply transforms into:

c1’0ðgkkÞ ¼ 1 ð30Þ

where ’0 is a rotation map [26], basically a small scale perturbation of the ideal coil
state ðc1 ¼ 1Þ. Equation (29) thus becomes:

q1 ¼ ’0ðg��, u��; x
�Þ ð31Þ

the right side generally connecting a set of internal coordinates (x), metric (g) and
energy contributions (u) to q1 � 1=c1:
Two main steps to deal within the near future are so (i) concentrating on the relation

between chain configuration and energy surface and (ii) studying the influence of
molecular microstructure which maps ’0 should account for. First practical goals are
performing standard computer simulations (molecular force fields and Monte Carlo
analysis) and to derive c1 as a function of relevant energy diagram parameters. Once
this is done, one can check the suitability of rotation maps to model Eq. (31). Doing
so, and better handling the complexity of numerical calculations, would surely benefit
from adopting convenient approximations. We will therefore focus on statistics of
rather simple systems, like polysaccharide molecules in liquid solutions with
square-well potential barriers, only depending on two parameters (width and depth).
For instance, sine-circle maps of the form:

’ðzÞ ¼ zþ sinð2�zÞ þ const ð32Þ

where proven already to describe the characteristic ratio (q1) in cellulosic solution [27].
The quantity z was related to the dihedral angle range accessible to cellobiose torsions
(i.e., the energy barrier width).

FIGURE 6 Scheme of (a) extension, (b) measure (equilibrium) and (c) shape-like states.
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CONCLUSIONS

Scaling and conformational statistics of macromolecules in solution are investigated
by starting from a relativistic picture of self-diffusion in liquids and its geometrical
analogy. Chain molecules are first defined through the curvature caused by locally
lowering the mobility of the liquid bulk where they embed. Their conformation
(shape) were then conceived as geometrical entities, scaling with length. Moreover:

1. Polymer conformations have been regarded as representative of geometrical states,
for chain extension and shape, which are undetermined by the length scale of
observation (i.e, the end-to-end dimension).

2. When length scale is vanishing, end-to-end separation and characteristic ratio
follow, as intrinsic geometrical properties, from the parallelism angle scaling in
the Bolyai–Lobachevskij manifold modelling the liquid.

3. In a stochastic causality description, chain statistics descends from a geometrical
uncertainty. It is described by wave functions (LW) travelling in a curved geometry
and solving an ondulatory equation for geodesic deviations. Usual normal distribu-
tions are found again as ground eigenstates.

4. At small length scales, the characteristic ratio can be expressed by rotations about
molecular geometry coordinates. At finite scales, it points out the average metric
coefficient of the space hosting the polymer coil.

5. Conformational polymer statistics is suggested being the counterpart of some small
scale-geometry (i.e., monomer).
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APPENDIX I

To work out Eq. (14), it suffices considering the variable change x ¼ =2:

Z �

0

�lðÞ d ¼ �2

Z �=2

0

ðcos 2xÞ�1 ln tan x dx ð33Þ

and recall [28]:

Z �=2

0

ðcos 2xÞ�1ðln tan xÞ2n�1 dx ¼
1� 22n

2n

� �
�2njB2nj ð34Þ

with n¼ 1 and B2¼ 1/6 (the second Bernoulli number).

APPENDIX II

The quantity e1/L equates the constant ratio between the arc lengths of two coaxial
horocycles, separated by the unit length [19]. A horicycle is a circle with infinite
radius, corresponding to the straight line concept in Euclidean geometry. Equation (17)
thus descends from the BL formula:

e�1=L ¼ tan


2
ð35Þ

and from:

tan


2
¼

1� cos 

1þ cos 

� �1=2
ð36Þ

with  2 ½0,��:

APPENDIX III

BBLE, combined with the spectrum in Eq. (22), reduces the equilibrium partition
function to a geometric series in �n:
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Z ¼
X
n

e�ð�=LÞð1=2þnÞ ¼
e�=2L

e�=L � 1
ð37Þ

The statistical definition of average coil size in L unit [11]:

�L ¼
@ lnZ

@ lnL

� �
ð38Þ

implies, from Eq. (10), that the scaling laws for � and � equal [29]:

�L ¼
1

2
lim
L!�

e�=L þ 1

e�=L � 1

� �
� const ð39Þ

100 S.A. MEZZASALMA AND A. CESÀRO
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